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A B S T R A C T

The two-fold purpose of this paper is to examine the adequacy of food composition databases and dietary

assessment techniques to meet the needs of nutritional genomic research and to explore the challenges

and opportunities presented by the emerging field of nutrigenomics to future development of food

composition databases and food composition analysis systems. A review of published literature and the

Internet for organizations and their ongoing dialogues were used to explore how current food

composition databases and nutritional assessment methodology could be made more useful in

nutrigenomics research. An outline of current projects and potential approaches to develop more reliable

and cost-effective methods for the study of nutrigenomics in diverse populations is presented. Many

issues related to these dietary and database methodologies need to be addressed and overcome if

nutrigenomics is to reach its potential for promoting optimal health through better individualization of

diet and physical activity recommendations. To meet the complex research and clinical challenges of

individualizing nutrition and health care, a network of diverse health care professionals and scientists is

needed to move the world toward optimal health practices.

� 2009 Published by Elsevier Inc.
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1. Introduction

A recent headline of the American Public Health Association
Newsletter heralded genomics as a new tool for improving public
health but noted a host of hurdles must be overcome before it can
be fully integrated into public health practice (Johnson, 2008). Nine
of the top 10 leading causes of death, especially chronic diseases
such as heart disease, diabetes, and cancer have important genetic
components that interact with modifiable environmental factors
including diet and physical activity (CDC, 2008a). Some maintain
this is the dawning of the era of personalized medicine and
nutrition (Allison, 2008).

With the publication of the Dietary Reference Intakes between
1997 and 2005, the emphasis in the field of nutrition moved from
preventing nutrient deficiencies toward a goal of optimal nutrition
(Otten et al., 2006). The Recommended Dietary Allowances (RDAs)
were expanded from the single RDA value to four reference values.
The 2005 revision of the USDA MyPyramid Food Guidance System
(USDA, 2008a) changed guidelines to provide a range of intakes
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according to additional factors such as gender, age, body mass index,
and activity levels. The growing awareness that one size does not fit
all and the success of the Human Genome Project (HGP) between
2001 and 2003 brought into focus the importance of genes in
defining optimal nutrition (Horowitz, 2005). HGP goals included
identifying, mapping, and sequencing of all the genes in human
deoxyribonucleic acid (DNA); storing the data in a database;
improving tools for data analysis; and addressing ethical, legal, and
social issues (HGP, 2008). A new specialized area of nutrition today
called nutrigenomics began to take shape that would attempt to
study and incorporate the scientific and technological advances into
dietetic practice (Ommen and Groten, 2004; Rosen et al., 2006;
Trujillo et al., 2006). The two-fold purpose of this paper is to evaluate
what is needed by researchers to develop nutrigenomics as the basis
for individualized health promotion and chronic disease prevention
in humans and to summarize the challenges human nutrigenomics
presents to existing food composition databases and food composi-
tion analysis systems.

2. Definitions

Nutrigenomics, sometimes termed, nutritional genomics,
describes the biological and statistical interaction among dietary
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chemicals and genetic make-up. These interactions vary because
individuals have unique combinations of common gene variants
that are differentially affected by diet (Kaput and Rodriguez, 2004).
The relationship between diet and genes impacts the effects of diet
on disease risk susceptibility, nutrient requirements, and even
treatment modalities (Gillies, 2003; Ontovas and Corella, 2004;
Trujillo et al., 2006; Stover and Caudill, 2008). This new genetic
nutrition approach describes nutrients in one of their biological
roles, that is, as ‘‘signaling molecules’’ that are recognized by
cellular sensing mechanisms and result in translation of these
dietary signals into changes in gene, protein, and metabolite
expression (Afman and Muller, 2006). At the genomic level, Afman
and Muller (2006) state that these molecular changes serve as
dietary ‘‘signatures’’ or fingerprints that can precisely annotate the
phenotype, particularly under conditions of metabolic stress and
early phases of organ-specific changes, e.g. insulin resistance.

3. Nutrigenomic goals, challenges and outcomes

The goals and expected outcomes of nutrigenomics are to: (1)
prevent or delay onset of disease and optimize or maintain human
health (Kaput and Rodriguez, 2004; Trujillo et al., 2006); (2)
identify individuals who are responders and can benefit from
specific dietary interventions (De Busk et al., 2005; Davis and
Milner, 2007); (3) develop evidence-based healthful food and
lifestyle advice and dietary interventions (Afman and Muller,
2006); (4) identify how human genetic variation affects nutritional
requirements (Stover, 2006; Stover and Caudill, 2008); and (5)
expand understanding of genetic mechanisms underlying health,
the basis of individual variation, and conditions when diet
influences metabolism (Stover, 2004). The goal of ‘‘individualizing’’
or ‘‘personalizing’’ nutrition for a single unique individual may or
may not be achievable and some have questioned whether it is
desirable based on social and cultural issues (Penders et al., 2007).
Realistically, focusing on subgroups of people who share certain
common genetic traits may be more practical and effective (Kaput,
Fig. 1. Strategy for identifyin
2008). This process of identifying subgroups within a population
who share common genetic traits is often termed placing
individuals into a bin and is similar to dividing individuals into
quintiles. See Fig. 1 for a graphic illustration of subgrouping
individuals by a genetic trait. Current nutritional, genetic, and
biomedical knowledge, however, is based largely on animal or
large population studies that may or may not be applicable to
individuals within these populations (Kaput, 2008). Creating
individual recommendations for nutrition will be a significant
challenge.

4. Commercialization of nutrigenomics

As the nutrigenomics field progresses, areas of commercia-
lization are emerging such as companies offering diets designed
for individuals based on genetic analyses of between one and
about thirty gene variants; more than 500 tests of genetic
variations exist (Bowen et al., 2005). A nonprofit think tank has
referred to this activity as ‘‘patenting and profiteering’’ (Gene-
Watch, 2006). Researchers indicate that the current scientific
evidence is not sufficient to recommend using genetic profiling
when developing diet and lifestyle recommendations for
optimal health or disease prevention (Cecile et al., 2008;
Hudson et al., 2007; Janssens et al., 2008). The American
Society of Human Genetics position is that direct-to-consumer
genetic testing presents several potential risks to consumers
related to laboratory quality, assay validity, false or misleading
claims, and lack of counseling to interpret and apply test results
(Hudson et al., 2007). Another area of commercialization is the
growing interest in the development of functional foods that can
be marketed to consumers (Roodenburg and Leenen, 2007). The
global market for fortified and functional foods is projected to
grow by at least 7% each year (Sloan, 2002; Subbiah, 2006), and
this growth rate will signal the need for more food component
analysis of foods and expansion of existing food composition
databases (Hudson et al., 2007).
g metabolic subgroups.
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5. Challenges and opportunities in nutrigenomics research

As research and technology advances, so will progress toward
personalized nutrition in the future. Some consumers and some
commercial firms appear anxious to pursue the advantages
promised by nutrigenomics now, regardless of inadequate
scientific knowledge. While clinical trials are considered the
strongest evidence for clinical applications, these types of studies
will be difficult to plan and conduct without further development
of tools and techniques, especially related to databases and dietary
assessment methodologies (Fogg-Johnson and Kaput, 2007; Kaput
et al., 2006). The need for more food analyses, specifically of the
bioactive substances not traditionally considered nutrients, is
increased (Fogg-Johnson and Kaput, 2007). A full food component
profile cost about 2000 US dollars per sample in 2002 (Haytowitz
et al., 2002). An international ranking scheme will likely be needed
to prioritize analyses of foods, and many developing countries will
not have the resources for analyzing their local foods.

A further challenge is the need for harmonization of food
composition databases (Slimani et al., 2007b). While harmoniza-
tion of databases is usually thought of as the use of common units
by two or more databases, the term standardization may also
apply, e.g. international system of units in which an international
group of scientists have designated seven units as the standard
unit for scientific studies. This means that mathematical formulas
may be used to translate from one unit to another. The question is
whether modern computers might allow even more complex
translation in food composition research. Food and food compo-
nent intake data are gathered by a variety of dietary assessment
tools and entered into food component analysis programs that
produce output in food composition and food component units, e.g.
water (g), energy (kcal or kJ), macronutrients (g), etc. These outputs
can be in common units, but the results are not considered to be
comparable between differing dietary tools. Ideally, statistical
methods might be developed by which adjustments could be made
that might allow data collected by one tool to be harmonized with
data collected by another tool. These methods are not available at
this point and future instruments may be developed that negate
the need for such methods. The other harmonization needed would
be the ‘‘back translation’’ of food components into foods. If
nutrigenomics can identify the likely level of one or more nutrients
or food constituents needed for a metabolomic reaction, a need
then exists for a database by which these levels can be converted
into specific foods.

Harmonization and standardization would allow databases
from various countries to be brought together into a universal
database and potentially could assist in global study of nutrige-
nomics (Charrondiere et al., 2002). A start has been made in the
European Prospective Investigator of Cancer and Nutrition (EPIC)
collaboration of ten countries to develop a standardized food
composition database, European Nutrient Database (ENDB), to
allow comparability of nutritional studies across countries
(Slimani et al., 2007a). While not new to food composition
databases, the need for harmonization becomes greater for
nutrigenomics research to be conducted on a global scale
(Charrondiere et al., 2002).

The most complete set of food composition data in the US is the
USDA National Nutrient Database for Standard Reference (USDA,
2008c), and the European Union has developed the comparable
European Food Information Resource Network EuroFir database
(EFIRN, 2008). Environmental conditions under which organisms
develop may modify growth and genotype. For example, Reynolds
et al. (2005) note that plant species, like other organisms, respond
to their environments, which may result in different food
component contents depending on the genotype of the plant
and its growth conditions. The Food and Agriculture Organization
of the United Nations and various national governments have
developed food composition tables for many countries worldwide
but data must often be extracted from unlinked flat files or print
publications and some are based on extrapolations from databases
in Western Countries (INFOODS, 2008a). Nevertheless, progress in
developing national and international food composition databases
is being made, as noted by the International Life Sciences Institute
Crop Composition Database (2006), the International Network of
Food Data Systems (INFOODS, 2008b,c), the aforementioned
EuroFir database and the ENDB project (Slimani et al., 2007b).

6. Influences on diet and gene interaction assessments

An added layer of complexity occurs when comparing food and
food component intakes across populations. Cultural differences in
food manufacturing, preparation, and eating customs exist not
only among nations and ethnic groups but also among religions
(Kim and Sobal, 2004). Personal choices such as various vegetarian
practices, sleep time quality, activity levels, and other factors
(Kaput et al., 2005) will also confound assessments of food
component intakes. Individual studies have successfully included
one or more of these choices or habits, but no study has been
published with most of these environmental factors incorporated
(Bell and Tepper, 2006; Ma et al., 1997). Knowledge of variance in
food composition for given foods and given varieties of selected
foods will be critical to the development of databases that can
estimate or assess consumption sufficient for the study of
nutrigenomics in humans (Stover and Caudill, 2008).

7. Dietary assessment for nutrigenomics

While dietary intake is considered a critical environmental
exposure affecting the relationships of many genetic factors and
disease risks, the complexity and variance in dietary intake has
limited the attention paid to nutrition by many geneticists (Kaput
and Rodriguez, 2004; Kaput et al., 2005). Biochemists who focus on
carefully controlled animal studies view self-reported dietary data
by humans as having questionable reliability. Epidemiologists who
analyze dietary patterns in large population studies view many of
the dietary methodologies as too burdensome, too expensive or too
labor intensive. Advanced statistical methods with structured
equations may prove helpful in assessing intakes (Dodd, 2006;
Dwyer et al., 2003; Tooze et al., 2006). The application of statistical
methods to estimate usual intake, such as that proposed by
Guenther et al. (1997), can be helpful if there are sufficient data
available on food intake variation in the population of interest.
Subar et al. (2006) have proposed a food propensity questionnaire
analysis as a new approach by quantifying a relationship between
frequency responses and a 24 h recall that might be used
effectively as covariates in statistical models to better estimate
usual intake of less regularly consumed foods. The science of
nutrigenomics has not yet addressed the level of precision needed
to analyze food component–gene interactions that alter physio-
logical processes.

Many recent nutrition studies have focused on large free-living
populations rather than on individuals in controlled environments
such as metabolic wards (Slimani et al., 2007a,b). These studies
necessitated the development of dietary assessment methodolo-
gies that could be used effectively with free-living populations. The
majority of American epidemiological studies have used a food
frequency questionnaire (FFQ) as the method of choice due to ease,
time, cost, and ability to retrieve dietary consumption over time.
The National Health and Nutrition Examination Survey (NHANES),
a large national study, collects a 24 h dietary recall in person and a
second 24 h recall via telephone (CDC, 2008b). The food record is
another method to assess usual food intake, but the proposed
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number of days of records required to establish confidence in usual
intake of different food components varies considerably depending
on age and gender and whether group means or individual means
are desired. For example, 3 days of food records are needed to
estimate energy intake for male group data compared with 27 days
of food records for individual male data (Basiotis et al., 1987). For
vitamin A intake, 39 days of food records are needed to estimate
means for male group data compared with 474 days for individual
males (Basiotis et al., 1987).

Tucker (2007) provides a succinct summary of the advantages
and disadvantages of common dietary assessment methods used in
large population studies and concludes that the FFQ remains the
most cost-effective tool for usual food intake in large populations.
Yet individualized nutrition studies will likely need to assess
subgroups of populations with given phenotypes and both similar
and dissimilar food exposure (Kaput, 2008). In examining diverse
populations or diverse subgroups within a population, the
assessment methods and databases needed to study these diverse
groups within feasible timeframes, costs, and respondent burden
have not been adequately addressed. A potential solution is to first
analyze specific food data by existing food composition software
and then to enter these analyzed values of nutrients and bioactive
components into an internationally harmonized database devel-
oped to allow comparison of nutrient and bioactive components
among studies regardless of the dietary assessment method used
to collect the specific food data (Kaput, 2007, 2008). Eventually,
another database would need to be developed to convert nutrient
and bioactive components back into a food-based database to
translate the information into counseling for clients.

Because individual researchers may have preferences for
dietary assessment tools such as FFQs, food records, or 24 h
recalls, each study generates independent and unlinked databases.
Dietary analysis software is usually designed for either the 24 h
recall or food record type of assessment while FFQs have unique
assessment programs with weighed food component values based
on the population or subpopulation for which the FFQ is designed.
The result of these practices is that sharing or comparing food
component intake data among studies is cumbersome and time-
consuming. An urgent and pressing need, therefore, is the
development of a relational database capable of capturing food
component intake from a variety of assessment methods and
converting food consumption into chemical analyses based on
accepted food composition databases. This type of database would
be analogous to the ever-expanding biomedical research databases
that are capturing molecular, genetic, proteomic, clinical, and
metabolomic data from human studies. A significant challenge for
such databases would be to account for cultural differences in food
manufacturing, preparation, and eating that includes religious
customs.

Linking dietary intake assessment databases to metabolomic
and genomic data will eventually lead to the ability to more
accurately monitor food intake through analyses of serum or urine
metabolite concentrations.

8. Potential approaches for nutrigenomic research

Given the promise of health benefits from individualized
nutrition, the detailed studies needed to expand our knowledge
base must be carried out in a reasonable and economically feasible
manner. One possible plan is to establish dietary patterns and
genetic patterns of health and disease within subgroups of the
population. Obtaining research data on dietary patterns and
genetic patterns, especially among minority and rural populations
who have not been involved in the large national surveys and who
lack knowledge of or trust in medical research is (i.e. individuals
without experience in prior research or in even receiving medical
care on a regular basis) presents special challenges (McCabe-
Sellers et al., 2008). An emerging research method for translational
research in health disparities is the community-based participa-
tory research (CBPR) approach used by the Delta Nutrition
Intervention Research Initiative (Ndirangu et al., 2007, 2008;
Zoellner et al., 2007). The CBPR approach involves establishing an
ongoing presence and trust between community residents and
researchers that educate residents about the value, benefits, and
principles of human research and, thereby, develops an equitable
partnership in planning, designing, implementing and evaluating
research studies based upon the community’s health priorities
(Chen et al., 2006; Ndirangu et al., 2007; McCabe-Sellers et al.,
2008).

9. Collaborations in communities

Collaboration across local, state, and regional agencies and
institutions and across many disciplines begins with dialogues in
which community residents are seen as having expertise and
valuable knowledge to bring to the research planning as well as
recognizing that community residents can be trained to be
knowledgeable and skillful in Institutional Review Board princi-
ples, data collection techniques, recruitment, retention, and
especially interpretation of data when analyzed. Some examples
of these types of collaboration include those from the Mississippi
Delta (Ndirangu et al., 2007, 2008; Yadrick et al., 2001; Zoellner
et al., 2007) and from Virginia (Chen et al., 2006). Dialogues can
begin collaboration with innovative steps to secure knowledge of
the benefits that genetic research can bring to individuals and to
their communities (McCabe-Sellers et al., 2008).

10. New technology applications

Another possible approach is to apply more technology to
dietary data collection and data entry about diets and foods. Bar
coding is one technique that holds promise of scanning specific
foods in household inventories; however, some grocery firms
consider bar coding as proprietary data. The US bar code system
contributes to the development of point-of-purchase dietary
assessments because each manufacturer is provided a 3-number
code identifying the company, but each product number is
generated within the company. The Food Marketing Institute
(2007) reports that the average US supermarket carries about
45,000 items. Although not all items are food, the number of
different manufacturers and, therefore, unknown bar code–food
component profiles is large and difficult to monitor.

The Internet holds future promise for self-administration of
FFQs and for self-assessment tools such as MyPyramid Tracker, an
online personal assessment (USDA, 2008b). Researchers have used
photographs or pictures of food as prompts in dietary interviews,
and telephone interviews have extended access to repeated dietary
assessment (Martin et al., 2007). Most recently, work has begun
using cell phones to photograph and record foods and to assess not
only specific foods but also portions of food consumed through
new engineering techniques (Boushey, 2009).

Innovative technological methods that improve accuracy in
dietary assessment are needed to improve the ability to detect and
understand diet–gene relationships. Certainly the advent of newer
computer technology and statistical analysis methodology will
increase the ability to develop models for closer linkage of various
databases.

11. International alliances

Food composition databases have been developed in varying
degrees of completeness, largely by global regional database
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working groups, and from the expertise of USDA Agricultural
Research Service scientists and their counterparts in Canada, the
United Kingdom, Europe, and other countries (Baingana, 2004; de
Pablo, 2004; Gnagnarella et al., 2004; McBurney et al., 2004;
Murphy et al., 2004; van Heerden and Schonfeldt, 2004).
Conferences such as the 7th International Food Data Conference
held in Sao Paulo, Brazil and the 32nd National Nutrient Databank
Conference held in Ottawa, Canada have promoted international
networking in the development and maintenance of databases. The
large European studies such as the EPIC study about cancer have
led to cooperation and collaboration to produce a multi-country
food composition database that can serve as a model for a larger
international global database (Slimani et al., 2007a,b).

A systems biology approach in which international alliances are
formed of diverse disciplines, models, technologies and popula-
tions produce a large collaborative network of nutritional
genomics researchers with expertise, data, resources and knowl-
edge to harmonize plans and objectives and reduce duplication of
efforts (Kaput et al., 2005). This same model could be considered on
an international level for dietary assessment methods and
databases through alliances formed by diverse researchers from
many countries. One such organizational model is the European
Nutrigenomics Organization (2008) that provides a continuing
Internet dialogue about goals, methods, disciplines, and other
issues related to dietary assessment and databases.

While new techniques are being developed and tested, long-
term steps need to be taken in other areas. One step is to establish
an international dialogue on developing databases and procedures
to allow knowledge and best practices to be shared. Some
researchers see a need to translate food component data from
various dietary assessment methods into one database.

12. Conclusions

The food composition and assessment methodologies and data
currently available are not sufficient or adequate to adjust dietary
recommendations and develop individualized or ‘‘metabolic
group’’ nutrition recommendations due to limited studies outside
the north European and North American populations. Even within
these populations, individual genetic and dietary variations in
many subpopulations have not been well studied. The question
that many researchers ask is when will sufficient evidence be
available for individualized nutrition and medicine to become a
reality. Arab (2004) has said that the availability of information on
which to base individualized recommendations depends on the
drive and will of the nutritional community, the success in
recruiting funding to the area, the education of nutritionists and
the spawning of great ideas and approaches.

Dialogue and collaboration among nutritionists, database
developers and researchers are needed to develop and harmonize
international databases such as ENDB and maintain organizations
such as INFOODS that work to improve the quality and quantity of
databases to allow nutrigenomics to become a reality. Interna-
tional collaboration and alliances continues across disciplines,
institutions, technologies, cultures and borders.
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